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Abstract
The surfaces of a crystal solid with a given crystallographic orientation are
usually described by the two dimensions of their extension. In the case
of well-defined periodicity, surface vibrational states are characterized by
two-dimensional wavevectors with non-vanishing dispersion in all directions
parallel to the surface. Microscopic processes such as rebonding of atoms
and adsorption, however, can lead to structural units on a surface that show
one- or even zero-dimensional signature. Phonon dispersion curves for clean
and adsorbate-covered surfaces of Si and III–V compounds are computed by
means of density-functional perturbation theory in the framework of slab-lattice
dynamics. These systems show surface phonon modes that clearly have two-,
one-, and zero-dimensional character. Vibrational states, which are obvious
fingerprints of their structural origin on the surface, are discussed in detail.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Surface phonon modes are, generally speaking, vibrational excitations, in which the dis-
placements of atoms are large near the surface and decrease essentially exponentially into
the bulk. The investigation of localized phonon modes therefore provides information about
the atomic geometry, bonding structure, and the interatomic force constants in the topmost
layers of a solid. Semiconductor surfaces are particularly interesting, because of the covalent
bonding forces in the substrate. The break-up of directed bonds on the surface often results
in the formation of new bonding units and charge redistribution from energetically higher to
more favourable electronic states. Such processes can lead to the creation of lower-dimensional
structures in the surface region. Typical examples for one-dimensional objects are the zigzag
chains on the (110) surfaces of free and Sb-covered III–V compound semiconductors (see
figure 8 below) and the dimer rows on the Si(001) surface (see figure 10 below). Direct
observation of these linear features was achieved by means of scanning tunnelling micro-
scopy (STM) [1, 2].
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The adsorption of small atoms can lead to a situation where the coupling of the chemisorbed
atoms with the substrate is much stronger than the interaction between the atoms of the adlayer.
In such cases, the vibrations of the chemisorption layer are mainly determined by the on-site
coupling. Hence, the adsorbed atoms can be considered as uncoupled oscillators, especially
if the mass of the substrate atoms is significantly larger than that of the adatoms. A typical
example for vibrational states with zero-dimensional character is the adatom stretching mode
of the Si(111) surface covered with one monolayer (ML) of hydrogen (see figure 5 below).

Supported by the remarkable advances achieved in the development of computational
schemes based on density-functional theory (DFT) [3,4] and the availability of supercomputers,
it is now possible to determine complete phonon dispersion curves for the bulk and the surfaces
of crystal solids within ab initio calculations that are free from any adjustable parameters.
The results presented in this paper were calculated in the framework of density-functional
perturbation theory (DFPT) [5,6], which is described in detail in the contribution of Pavone [7].
With this method, it is possible to compute in a consistent way the atomic equilibrium positions,
charge redistribution, bonding, and the phonon dispersion of free and adsorbate-covered
semiconductor surfaces.

The paper is organized as follows. Section 2 gives an introduction to the concept of
slab-lattice dynamics and the terminology generally used to describe crystal surfaces and their
phonon modes. Section 3 is focused on the Si(111) surface covered by hydrogen and group-III
atoms. These systems show quasi-zero-dimensional vibrational modes. In section 4, structures
with one-dimensional behaviour are discussed. The chosen examples are Sb atoms adsorbed
on the (110) surfaces of III–V compounds and the dimer rows on Si(001). Section 5 addresses
the majority surface vibrational states which have by nature two-dimensional character. The
paper is summarized in section 6.

2. Surfaces and slab-lattice dynamics

While a few bulk phonon dispersion curves have been determined by means of inelastic x-ray
scattering, this has not yet been done for surface modes. In a macroscopic view, surfaces
can be described as two-dimensional planes at which a solid terminates. Because of atomic
rearrangements and charge redistribution, it is necessary, however, to consider a sufficiently
large surface region which comprises all atomic layers that are affected by the truncation of
the solid. The orientation and the periodicity of a crystal surface are usually represented in the
following form:

material (hkl) Z (m1 × m2) Rϕ.

The orientation of the surface is given by the Miller indices (hkl)of the bulk. There are primitive
and centred surface structures which are reflected by Z = p and Z = c, respectively. The
numbersm1 andm2 indicate whether the surface has the same periodicity as the corresponding
bulk (hkl) planes (m1,m2 = 1) or not. Primitive translations of increased length (m1 > 1
or m2 > 1) and eventually rotated orientation (Rϕ) are needed to describe the translational
symmetry of reconstructed surfaces. Reconstruction can result from the formation of new
bonds, the removal of surface atoms, low-coverage adsorption, or other processes.

2.1. Thin crystal films

The bulk of crystal solids is usually described by primitive translations a1, a2, and a3 defining
the Bravais lattice and the vectors Rbulk

α (α = 1, . . . , nbulk) giving the basis positions of all
nbulk atoms in the unit cell relative to its origin. Periodic repetition of the primitive unit cell
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generates the entire crystal. The time-dependent position vector of an atom in the solid is
represented by

R′
lα(t) = Rlα + ulα(t) (1)

where ulα(t) is the displacement of the αth atom in the lth unit cell (l = (l1, l2, l3)) from the
equilibrium position

Rlα = Rl + Rbulk
α = l1a1 + l2a2 + l3a3 + Rbulk

α . (2)

The integers l1, l2, and l3 range in the interval from −∞ to +∞ for the bulk. With an
appropriate choice of a1 and a2 parallel to the surface, a semi-infinite crystal with one surface
can be represented by −∞ < l1 < +∞, −∞ < l2 < +∞, and −∞ < l3 � 0 or 0 � l3 < +∞.

Surfaces are more conveniently described on the basis of thin crystal films which comprise
a sufficiently large (but finite) number of atomic layers with infinite extension in the plane of
the slabs. The lattice vectors

Rl = l1a1 + l2a2 (3)

form a two-dimensional lattice in the (x, y) plane with vanishing z-component as indicated by
the abbreviations

R = (R1, R2, 0) and l = (l1, l2, 0). (4)

The atomic equilibrium positions in the crystal film are defined by

Rlα = Rl + Rα (5)

where the basis vectors Rα specify the positions of all atoms in the slab unit cell. The index
α indicates the type of atom and the layer of the crystal film in which it resides. Typically,
slab unit cells used in electronic structure calculations comprise about ten atomic layers. The
primitive translations a1 and a2 correspond to the lattice constant determined for the bulk
material and have to be chosen in accord with the reconstruction of the surface. The primitive
translations b1 and b2 of the reciprocal space are defined according to the relations

b1 = 2π
a2 × (a1 × a2)

|a1 × a2|2
and b2 = 2π

a1 × (a2 × a1)

|a1 × a2|2
. (6)

Figure 1 illustrates the two-dimensional Brillouin zones of the most commonly
investigated zincblende-compound semiconductor surfaces. The (001) and (111) surfaces
of elemental semiconductors often exhibit (2 × 1) reconstructions as indicated in the lower
part of figure 1. For all cases, standard labels for high-symmetry points are given.

2.2. Slab-lattice dynamics

The adiabatic potential, which is the sum of all ion–ion interaction terms and the electronic
ground-state energy, determines the vibrational properties of the crystal film. Its Taylor
expansion has a vanishing first-order term for small atomic displacements {ulα} from the
equilibrium positions {Rlα} and is given by

Vad({Rlα + ulα}) = Vad({Rlα}) +
1

2

∑

lαi

∑

l ′α′j

�ij (lα, l
′α′)ulαiul ′α′j + · · · . (7)

The indices i and j denote the three Cartesian coordinates. The coefficients �ij (lα, l
′α′) are

the harmonic force constants defined as the second-order derivatives of the adiabatic potential
with respect to the atomic displacements taken in the positions of minimal energy ({ulα} = 0):

�ij (lα, l
′α′) = ∂2Vad

∂ulαi ∂ul ′α′j

∣∣∣∣
{ulα}=0

. (8)
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Figure 1. Surface Brillouin zones for the (110), (111), and (001) surfaces of zincblende-compound
semiconductors. The lower part shows the Brillouin zones of (1×1) and (2×1) surface geometries.

In the harmonic approximation, the equations of motion for the atomic displacements can be
written as

Mα

d2

dt2
ulαi = −

∑

l ′α′j

�ij (lα, l
′α′)ul ′α′j (9)

where Mα is the mass of the αth atom in the unit cell.
Translational periodicity is assumed parallel to the surface for all planes of the crystal

film. We therefore search for solutions of the equations of motion (9) in the form

ulαi = 1√
Mα

vαi(q)e
i(q·Rl−ωt) (10)

where q = (q1, q2, 0) is a wavevector lying in the surface Brillouin zone. Substitution of
equation (10) into equation (9) yields the eigenvalue problem

ω2(q)vαi(q) =
∑

α′j

Dij (αα
′, q)vα′j (q) (11)

with the dynamical matrix defined by

Dij (αα
′, q) =

∑

l ′

1√
MαMα′

�ij (lα, l
′α′)e−iq·(Rl−Rl ′ ). (12)

For n atoms in the slab unit cell the dynamical matrix has the dimension (3n × 3n).
Diagonalization of the Hermitian matrix for each wavevector q in the SBZ yields 3n real
and non-negative eigenvalues ω2

s (q) and 3n × 3n eigenvector components vs
αi(q).
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The 3n normal modes of the slab determined for each q can be classified with respect to
their polarization and the square of the amplitudes in the different layers of the crystal film. Bulk
and surface modes are distinguished according to the behaviour of their amplitude as a function
of the layer depth. While bulk modes do not change significantly in vibrational amplitude when
comparing the outer with the inner planes of the slab, the atomic displacements associated with
true surface vibrations decrease essentially exponentially approaching the central layers of the
crystal film. Resonances result from a mixing of true surface modes with phonon states of the
bulk. Their vibrational amplitude does not decay approaching the inner region; however, it
exhibits larger components in the surface layers.

2.3. Slab dispersion relations

The eigenfrequencies ωs(q) are usually plotted as a function of the wavevector q. Typical slab
dispersion relations comprise all branches (s = 1, . . . , 3n). The majority of the 3n branches
represent bulk-like phonon modes. Only a small number are related to localized and resonant
surface vibrations. While the number of surface phonon modes is characteristic and does not
change with the size of the crystal film, the number of bulk-related branches increases as more
atomic layers are used in the slab calculation. All bulk-related branches lie in a frequency
range determined by the vibrational spectrum of the material. In slab calculations the bulk
phonon dispersion perpendicular to the plane of the crystal film is effectively folded back
to a corresponding wavevector q in the SBZ. This results from the fact that the number of
layers per crystal film is usually much larger compared to the minimum number required to
describe the bulk using the same lattice vectors a1, a2 as for the surface (slab-adapted bulk).
This is schematically illustrated in figure 2 for the bulk phonon dispersion of InP folded onto
wavevectors lying in the (110) plane.

,,

k z(0,0,

)kx ky 0(

)

LA

InP

slab adapted
bulk

ω

(0,0,0)

TO

TA

LO

full symmetry
bulk

Figure 2. A schematic illustration of the projection of the bulk band structure of InP onto the (110)
plane in the �X direction of the SBZ. The surface normal is oriented in the z-direction.
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Bulk phonon branches appear in the entire range of the surface-projected band structure.
The density of bulk branches is the greater the more atomic layers the single slab comprises.
Gaps often appear in the bulk mode spectrum, especially for wavevectors q different from zero.
No bulk vibration is allowed in such regions. Similarly to the case for InP, many diatomic
crystals exhibit a gap between the acoustic and optical bulk modes for all wavevectors of
the Brillouin zone. The existence of such gaps is interesting, since surface vibrations can
occur in regions forbidden for bulk modes. This can be seen from the phonon dispersion of
InP(110) which is shown in figure 3 for the �X direction. In such a case, surface phonons
are well localized in the outer layers. True surface vibrational states can also occur in bulk
mode frequency regions as long as the surface mode eigenvector has different symmetry to the
eigenvectors of the phonons of the bulk with close-lying frequencies.
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Figure 3. Phonon dispersion along the �X direction of a InP(110) slab comprising 25 atomic
layers. Surface-localized states are indicated by thick lines, while all other vibrational states of the
crystal film are represented by thin lines.

3. Phonon modes with zero-dimensional signature

The adsorbate-covered (111) surface of Si is an ideal system in which to study phonon modes
with zero-dimensional character. The simplicity of the chemisorption structures is related
to the bonding symmetry of the bulk material (see figure 4). The singly occupied dangling
bonds of the bulk-terminated surface are ideal adsorption sites for hydrogen atoms or group-
III atoms. Hydrogen adsorbs on top of each first-layer Si atom saturating all dangling bonds.
It is possible to reach the 1 ML coverage limit [8], where the resulting H:Si(111)(1 × 1)
surface has the same translational symmetry as the bulk planes. Because of their three valence
electrons, group-III atoms adsorb on top of three first-layer Si atoms saturating their dangling
bonds. The adsorption layer forms a hexagonal lattice, which can be described in terms of
III:Si(111)(

√
3×√

3)R30◦. This means that the primitive translations of the group-III adlayer
are rotated by 30◦ and increased in length by a factor of

√
3 with respect of those of the bulk

(111) planes.
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Adsorption on Si(111)

[111]

[121]

1 dangling bond per
surface atom

K 

M Γ 

SBZ 

[121]

[101]
/

Top view

20a

Adsorbate
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Top view

d = 6.74 Å 

Hydrogen Group-III atoms

4
T above every 3rd 

second-layer Si atom

d = 3.89 Å

H: on top of each
first-layer Si atom

Figure 4. Adsorption of hydrogen and group-III atoms on the Si(111) surface. The first-layer atoms
on the ideal Si(111) surface have one dangling bond normal to the surface. Hydrogen adsorbs on
top of each first-layer Si atom saturating all dangling bonds. Group-III atoms adsorb at T4 sites
directly above second-layer atoms. The chemisorbed atoms are bonded to three first-layer Si atoms
saturating their dangling bonds.

3.1. Hydrogen adsorption on Si(111)

As illustrated in figure 4, hydrogen atoms adsorbed on Si(111) form a hexagonal overlayer
with an H–H distance of 3.89 Å. The H–H interaction is much weaker than the on-site coupling
of each H atom, which can be described by one bond-stretching and two bond-bending force
constants. The atomic mass of H is small compared with that of the substrate atoms. Therefore,
substrate-mediated H–H coupling is also very weak.

Figure 5 illustrates the phonon dispersion computed for H:Si(111) along the �M, MK,
and K� directions of the SBZ [9]. The flat branch at about 265 meV is the H stretching mode,
which has a dispersion of only 0.7 meV. Hence, the frequency of this vibrational state is almost
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Figure 5. Phonon dispersion of H:Si(111). The vibrations of the adsorbed atoms are found
above the energy range of all other phonons at about 265 meV (stretching mode) and 72 meV
(bending modes). Experimental data from high-resolution electron energy-loss spectroscopy [10]
are illustrated by the circles.

the same, irrespective of whether neighbouring atoms oscillate in phase or out of phase. This
clearly shows that the interaction between neighbouring H atoms is weak. The bending modes
have an energy of about 72 meV. They are degenerate at the � point—however, split into two
separate branches with a dispersion of about 2.5 meV. This illustrates that the hydrogen atoms
interact weakly when moving parallel to the surface. In contrast with the adlayer vibrations,
the majority of surface phonon modes shown in figure 5 have two-dimensional character with
appreciable dispersion in all directions.

3.2. Adsorption of group-III elements on Si(111)

The deposition of Al, Ga, and In on Si(111) leads to the formation of (
√

3 × √
3)R30◦

superstructures. STM experiments clearly show that chemisorbed Al and Ga atoms are bonded
to Si(111) in positions above atoms of the second substrate layer [11–13] as illustrated in the
lower part of figure 6. The bonds between the atoms 2 and 3 are compressed as a result
of the adsorption. The phonon dispersion computed for Ga:Si(111)(

√
3 × √

3)R30◦ [14] is
illustrated in the upper part of the figure. Most of the features recorded by means of inelastically
scattered electrons and helium atoms can be attributed to localized surface states identified in
the density-functional calculation.

Because of the large mass of the adsorbed atoms, there is no high-frequency stretching
mode comparable to that of the H:Si(111) surface. A prominent feature in the measured
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Figure 6. Phonon dispersion of Ga:Si(111)(
√

3 × √
3)R30◦ [14] and the eigenvector of the bond-

stretching mode. Experimental data from inelastic helium-atom scattering [15] and high-resolution
electron energy-loss spectroscopy [16] are included. The right portion of the figure illustrates an
estimate for the scattering cross section computed for the �M direction.

and calculated phonon dispersion of Ga:Si(111)(
√

3 × √
3)R30◦ is a flat branch above the

continuum of the bulk states, with a computed �-point frequency of about 67.7 meV, which
is in good agreement with the experimental value of about 68.0 meV. The corresponding
eigenvector is dominated by a stretching oscillation of the compressed bond between atoms 2
and 3, which are in the second and third substrate layer and directly below the adatoms. This is
illustrated in the lower portion of figure 6. The gallium atoms and the atoms in the first substrate
layer are essentially at rest. The large separation of 6.74 Å between neighbouring adatoms
and thus compressed bonds is reflected in a zero-dimensional behaviour of the bond-stretching
mode, which has almost no dispersion.

Since the atomic and electronic structure is nearly the same for the adsorption of Al, Ga
and In on Si(111), this surface mode is common for all III:Si(111)(

√
3 ×√

3)R30◦ adsorption
systems. Its computed vibrational energy is 68.5 meV for the subsurface stretching mode in
the case of Al coverage and 67.1 meV for the coverage of Si(111) with In.
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4. Phonon modes with one-dimensional signature

We now turn to cases where a surface vibrational state has constant frequency in one direction
of the SBZ and shows dispersion for other directions. A simple model for this situation is
illustrated in figure 7. The atoms of the linear structure are attached to the substrate by bonds
with a harmonic force constant of ϕon site = f/2. The atoms are coupled by nearest-neighbour
forces ϕnn = f along the y-direction, while the interaction is zero along the x-direction.
Therefore, the vibrational frequencies are constant for wavevectors along the x-axis, while the
phonon branches of y-polarized modes show dispersion in the y-direction.

f onsite:  f/2

x

y

a

1.0

2.0

0.0
π/a π/a0

q
x

q
y

F
re

qu
en

cy

Dispersion of the y-polarized mode

Figure 7. A spring constant model for a linear structure on a crystal surface. The atoms are allowed
to oscillate in the x- and y-directions. The atoms are coupled by a nearest-neighbour force constant
f along the y-direction. The on-site coupling is f/2.

4.1. Adsorption of Sb on III–V(110) surfaces

Antimony is an exceptionally well-behaved adsorbate for covering (110) surfaces of III–V
compound semiconductors with a group-V element. The chemisorption leads to the epitaxial
continued-layer (ECL) structure. In the ECL geometry, two Sb atoms are adsorbed per (1 × 1)
unit cell of the pristine surface, occupying all atomic positions of the first missing layer derived
from the symmetry of the underlying material. This is illustrated in figure 8. As a consequence
of the bonding structure of the substrate, the adatoms form zigzag chains along the [110]
direction. Each Sb atom is coupled by covalent bonds to two adatoms in the same chain and
to one atom of the substrate. Interaction between two Sb–Sb chains is mediated by small
long-range forces and indirectly through the interaction with the substrate.

The coupling of two Sb–Sb zigzag chains is particularly small for vibrational modes that
are polarized along the chain direction and mainly localized in the adsorption layer. This is
the case for the vibrational mode with a computed �-point energy of 19.7, 20.9, 18.7, and
19.4 meV for Sb adsorbed on the (110) surfaces of GaAs, GaP, InAs, and InP (see figure 9).
The eigenvector of this mode, which is illustrated in the lower part of the figure, is characterized
by an opposing motion of neighbouring Sb atoms along the chains for all wavevectors along
the �X′ direction of the SBZ. In this direction, which is perpendicular to the orientation of the
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InP [17]. Light broken lines indicate the dispersion of selected modes of the clean surfaces. The
heavy broken lines show the shear mode of the adlayer zigzag chains illustrated for the � and X
point in the lower portion. Dots and triangles represent the results from Raman scattering [18–20]
and another density-functional calculation [21].
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chains, the related phonon branches do not show dispersion. In the �X direction, however,
the frequency is notably reduced to lower vibrational energies, particularly in the case of
Sb:InAs(110), while the simple model shown in figure 7 gives an increase of the frequency.
The reason for this is that the zigzag bonding structure in the chains couples x- and y-polarized
displacements. For wavevectors of the �X direction, it is not forbidden by symmetry that the
eigenvectors have vibrations along and perpendicular to the chains. By this it is possible to
reduce bond-stretching forces in the chains.

4.2. Dimer rows on Si(001)(2 × 1)

It is generally accepted that the basic reconstruction of the Si(001) surface consists in the
formation of dimers arranged in rows perpendicular to the dimer bonding direction (see
figure 10). The resulting p(2 × 1) structure has clearly been resolved by STM [1]. Buckling
of the dimers reduces the surface energy. Highly converged ab initio calculations achieve
an energy gain per dimer of about 0.1 eV for the asymmetric configuration compared to
the symmetric case. The formation of dimer rows indicates that the interaction of first-
layer Si atoms is large in the direction of the rows and small between neighbouring rows
of dimers.

ideal
surface

(2x1) reconstruction

symmetric dimers buckled dimers

[001]

[110]

[110]

Figure 10. Reconstruction of Si(001) into the (2 × 1) buckled dimer geometry. Dimers formed
between neighbouring first-layer atoms are aligned in rows which are oriented perpendicular to the
dimer bonding direction. Buckling of the dimers reduces the surface energy.

A fingerprint of the dimer reconstruction is the rocking mode illustrated in the lower part
of figure 11. It is characterized by an opposing up and down displacement of the surface
atoms leading to a rocking motion of the dimers increasing and decreasing periodically the tilt
angle. This mode’s phonon branch is almost flat along the �J and KJ′ directions. This shows
that the interaction between neighbouring dimer rows is weak. The wavevector component
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Figure 11. Phonon dispersion of the tilted-dimer Si(001)p(2 × 1) surface [22]. The rocking mode
(r) illustrated in the side view is a fingerprint of the buckled dimer structure.

along the rows changes along the JK and �J′ directions. Hence, the appreciable variation of
the rocking-mode frequency indicated by the arrows in figure 11 reflects the coupling of the
dimers along a row. The resonant behaviour also reveals substantial coupling of the rocking
vibration with bulk phonon modes.

5. Surface phonons with usual dispersion

The majority of the surface phonon branches illustrated in figures 3, 5, 9, and 11 show
dispersion in all directions of the SBZ. This is in particular the case for surface acoustic waves,
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which are characterized by a linear increase of their vibrational energy close to the � point.
In the limit of small wavevectors, surface acoustic waves depend only on elastic constants
and other macroscopic properties of the material. They are solutions of the equations of
motion in the continuum limit, taking into account the boundary conditions introduced by
the truncation of the solid at the surface, which can be treated as a two-dimensional plane.
Well-known representatives of surface acoustic waves are the Rayleigh waves [23] and their
generalized version. These and all other macroscopic vibrational modes penetrate deeply
into bulk layers. They can be derived from macroscopic properties of the material and are
insensitive to structural details of the surface, as long as their wavelength is large enough. For
the Sb-covered III–V(110) surfaces, three acoustic phonon modes appear in the �X direction,
while two or three such branches are seen along the �X′ direction.

Also most of the true or so-called microscopic surface vibrational modes have dispersion
in all directions of the SBZ. Figure 12 shows displacement patterns of two selected vibrational
states of Sb:InP(110). The mode being illustrated in the upper part of the figure lies above
the continuum of the surface-projected bulk bands of InP. Its dispersion in the �X′ direction
originates in an interaction of the oscillating substrate atoms mediated by the adsorption layer.
The energies of the gap mode illustrated in the lower portion of the figure are 35.8 and 36.7 meV
at the � and X′ points, respectively. The coupling in the [001] direction originates in the
deformation of the sixfold rings defined by the substrate atoms and adlayer atoms.

[110]

[001]

High frequency mode

Gap mode

Sb

P

In

Interactions along zigzag chains

Interactions across zigzag chains  (             )

Figure 12. The displacement pattern of two microscopic modes of Sb:InP(110) which show
dispersion along and across the Sb–Sb surface chains. The eigenvectors are shown for the � point
of the SBZ.
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6. Summary

Phonon dispersion curves of semiconductor surfaces were discussed in terms of signatures
for zero- and one-dimensional structures, which can be the result of atomic rearrangements,
rebonding, or adsorption. Usual surface phonon modes change their frequency with varying
wavevector along all directions of the SBZ. Vibrational states of linear structures on a surface,
however, change their energy only with a variation of the wavevector component along the
structures’ orientation. Examples are the shear modes of the adlayer zigzag chains of Sb
chemisorbed on the (110) surfaces of III–V compound semiconductors and the rocking mode
of the Si(001)p(2 × 1) surface. Structures with zero-dimensional character can result from the
adsorption of small atoms like hydrogen or by low-coverage chemisorption of larger atoms.
In this context, the hydrogen stretching modes of H:Si(111)(1 × 1) and the subsurface bond-
stretching mode of the III:Si(111)(

√
3 × √

3)R30◦ surface were discussed.
The atomic equilibrium positions, charge redistribution, and rebonding are the main

factors that determine interatomic force constants and thereby the phonon mode frequencies.
Hence, the given examples show that a careful analysis of surface phonon dispersion curves
can provide useful and important information about the structure of crystal surfaces. The
three main experimental techniques currently available to measure surface phonon dispersion
curves are inelastic helium-atom scattering, high-resolution electron energy-loss spectroscopy,
and Raman spectroscopy. With helium-atom scattering it is difficult to measure vibrational
frequencies above 20 meV. The resolution of electron energy-loss spectroscopy is limited.
Raman spectroscopy allows one to probe essentially only zone-centre phonon modes. It is
therefore desirable to develop further experimental techniques for the measurement of surface
phonon dispersion curves. Already, synchrotron radiation is used in x-ray standing-wave [24]
and grazing-incidence diffraction experiments [25] to determine atomic positions in the surface
region. As for the measurement of bulk phonon dispersion curves with synchrotron radiation,
one may expect the successful application of inelastic x-ray scattering at crystal surfaces in
the future.
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